Commit 84e0b9a0 authored by Oskars Linde's avatar Oskars Linde
Browse files

IMplement fine plots for interpolation

parent 9d46dd3f
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Done. Total elapsed time: 0.03s\n",
"(14.568, 59.012, 41.106)\n",
"(29.481, 60.481, -2.774)\n",
"(18.019, 71.888, -5.666)\n",
"DONE\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import time\n",
"from math import atan, sqrt\n",
"\n",
"inputData = 'data/jrp/accData-02-27_jrp_test.txt'\n",
"outputData = 'data/jrp/jrp_Data_test.txt'\n",
"\n",
"start = time.time()\n",
"columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']\n",
"df = pd.read_csv(inputData, header = None, names = columns)\n",
"df = df.dropna()\n",
"\n",
"xList = list(df['x-axis'])\n",
"yList = list(df['y-axis'])\n",
"zList = list(df['z-axis'])\n",
"\n",
"#print(xList[0], yList[0], zList[0])\n",
"\n",
"M_PI = 3.14159265358979323846\n",
"for i in range(0,df['x-axis'].size):\n",
" tempX = xList[i]* 3.9\n",
" tempY = yList[i]* 3.9\n",
" tempZ = zList[i]* 3.9\n",
" \n",
" if((tempY*tempY + tempZ*tempZ) == 0):\n",
" pitch = 180 * 1.570796/M_PI\n",
" else:\n",
" pitch = 180 * atan(tempX/sqrt(tempY*tempY + tempZ*tempZ))/M_PI\n",
" \n",
" if((tempX*tempX + tempZ*tempZ) == 0):\n",
" roll = 180 * 1.570796/M_PI\n",
" else:\n",
" roll = 180 * atan(tempY/sqrt(tempX*tempX + tempZ*tempZ))/M_PI \n",
" \n",
" if((tempX*tempX + tempZ*tempZ) == 0):\n",
" yaw = 180 * 1.570796/M_PI\n",
" else:\n",
" yaw = 180 * atan(tempZ/sqrt(tempX*tempX + tempZ*tempZ))/M_PI\n",
"\n",
" xList[i] = round(pitch, 3)\n",
" yList[i] = round(roll, 3)\n",
" zList[i] = round(yaw, 3)\n",
" \n",
" if (i % 1000 == 0):\n",
" end = time.time()\n",
" #print(\"%.2f%% Done. Elapsed time: %.2fs\" % (i*100/df['x-axis'].size, end - start))\n",
" \n",
"end = time.time() \n",
"print(\"Done. Total elapsed time: %.2fs\" % (end - start))\n",
"print(xList[0], yList[0], zList[0])\n",
"print(xList[1], yList[1], zList[1])\n",
"print(xList[2], yList[2], zList[2])\n",
"\n",
"x_vector = np.asarray(xList)\n",
"x_vector.T\n",
"\n",
"y_vector = np.asarray(yList)\n",
"y_vector.T\n",
"\n",
"z_vector = np.asarray(zList)\n",
"z_vector.T\n",
"\n",
"\n",
"df['x-axis'] = x_vector\n",
"df['y-axis'] = y_vector\n",
"df['z-axis'] = z_vector\n",
"\n",
"\n",
"df.to_csv(outputData, header=False, index=False) \n",
"#print(df)\n",
"print(\"DONE\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -109,14 +109,14 @@
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment