Commit 84e0b9a0 authored by Oskars Linde's avatar Oskars Linde
Browse files

IMplement fine plots for interpolation

parent 9d46dd3f
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Done. Total elapsed time: 0.03s\n",
"(14.568, 59.012, 41.106)\n",
"(29.481, 60.481, -2.774)\n",
"(18.019, 71.888, -5.666)\n",
"DONE\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import time\n",
"from math import atan, sqrt\n",
"\n",
"inputData = 'data/jrp/accData-02-27_jrp_test.txt'\n",
"outputData = 'data/jrp/jrp_Data_test.txt'\n",
"\n",
"start = time.time()\n",
"columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']\n",
"df = pd.read_csv(inputData, header = None, names = columns)\n",
"df = df.dropna()\n",
"\n",
"xList = list(df['x-axis'])\n",
"yList = list(df['y-axis'])\n",
"zList = list(df['z-axis'])\n",
"\n",
"#print(xList[0], yList[0], zList[0])\n",
"\n",
"M_PI = 3.14159265358979323846\n",
"for i in range(0,df['x-axis'].size):\n",
" tempX = xList[i]* 3.9\n",
" tempY = yList[i]* 3.9\n",
" tempZ = zList[i]* 3.9\n",
" \n",
" if((tempY*tempY + tempZ*tempZ) == 0):\n",
" pitch = 180 * 1.570796/M_PI\n",
" else:\n",
" pitch = 180 * atan(tempX/sqrt(tempY*tempY + tempZ*tempZ))/M_PI\n",
" \n",
" if((tempX*tempX + tempZ*tempZ) == 0):\n",
" roll = 180 * 1.570796/M_PI\n",
" else:\n",
" roll = 180 * atan(tempY/sqrt(tempX*tempX + tempZ*tempZ))/M_PI \n",
" \n",
" if((tempX*tempX + tempZ*tempZ) == 0):\n",
" yaw = 180 * 1.570796/M_PI\n",
" else:\n",
" yaw = 180 * atan(tempZ/sqrt(tempX*tempX + tempZ*tempZ))/M_PI\n",
"\n",
" xList[i] = round(pitch, 3)\n",
" yList[i] = round(roll, 3)\n",
" zList[i] = round(yaw, 3)\n",
" \n",
" if (i % 1000 == 0):\n",
" end = time.time()\n",
" #print(\"%.2f%% Done. Elapsed time: %.2fs\" % (i*100/df['x-axis'].size, end - start))\n",
" \n",
"end = time.time() \n",
"print(\"Done. Total elapsed time: %.2fs\" % (end - start))\n",
"print(xList[0], yList[0], zList[0])\n",
"print(xList[1], yList[1], zList[1])\n",
"print(xList[2], yList[2], zList[2])\n",
"\n",
"x_vector = np.asarray(xList)\n",
"x_vector.T\n",
"\n",
"y_vector = np.asarray(yList)\n",
"y_vector.T\n",
"\n",
"z_vector = np.asarray(zList)\n",
"z_vector.T\n",
"\n",
"\n",
"df['x-axis'] = x_vector\n",
"df['y-axis'] = y_vector\n",
"df['z-axis'] = z_vector\n",
"\n",
"\n",
"df.to_csv(outputData, header=False, index=False) \n",
"#print(df)\n",
"print(\"DONE\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
...@@ -109,14 +109,14 @@ ...@@ -109,14 +109,14 @@
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
"name": "ipython", "name": "ipython",
"version": 2 "version": 3
}, },
"file_extension": ".py", "file_extension": ".py",
"mimetype": "text/x-python", "mimetype": "text/x-python",
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython2", "pygments_lexer": "ipython3",
"version": "2.7.12" "version": "3.6.7"
} }
}, },
"nbformat": 4, "nbformat": 4,
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment